Impacts of ocean acidification on marine fauna and ecosystem processes

Victoria J. Fabry, Brad A. Seibel, Richard A. Feely, and James C. Orr

Oceanic uptake of anthropogenic carbon dioxide (CO₂) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO₂ (pCO₂) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic zones. The ability of marine animals, most importantly pteropod molluscs, foraminifera, and some benthic invertebrates, to produce calcareous skeletal structures is directly affected by seawater CO₂ chemistry. CO₂ influences the physiology of marine organisms as well through acid-base imbalance and reduced oxygen transport capacity. The few studies at relevant pCO₂ levels impede our ability to predict future impacts on foodweb dynamics and other ecosystem processes. Here we present new observations, review available data, and identify priorities for future research, based on regions, ecosystems, taxa, and physiological processes believed to be most vulnerable to ocean acidification. We conclude that ocean acidification and the synergistic impacts of other anthropogenic stressors provide great potential for widespread changes to marine ecosystems.

Keywords: anthropogenic CO₂, calcification, ecosystem impacts, hypercapnia, ocean acidification, physiological effects, zooplankton.

Received 11 July 2007; accepted 14 February 2008

V. J. Fabry: Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096–0001, USA. B. A. Seibel: Department of Biological Sciences, University of Rhode Island, Kingston RI 02881, USA. R. A. Feely: Pacific Marine Environmental Laboratory, NOAA, Seattle, WA 98115–6349, USA. J. C. Orr: Marine Environmental Laboratories, International Atomic Energy Agency, Monaco MC-98000, Monaco. Correspondence to V. J. Fabry: tel: +1 760 7504113; fax: +1 760 7503440; e-mail: fabry@csusm.edu.

Introduction

Rising atmospheric carbon dioxide (CO₂) concentration is causing global warming and ocean acidification (Caldeira and Wickett, 2003, 2005; Feely et al., 2004; Orr et al., 2005), which increasingly are recognized as important drivers of change in biological systems (Lovejoy and Hannah, 2005). For at least 650 000 years prior to the industrial revolution, atmospheric CO₂ concentrations varied between 180 and 300 ppmv (Siegenthaler et al., 2005). As a result of human activity, today’s atmospheric CO₂ concentration is 380 ppmv and currently is rising at a rate of ~0.5% year⁻¹ (Forster et al., 2007), which is ~100 times faster than any change during the past 650 000 years (Royal Society, 2005; Siegenthaler et al., 2005). Approximately one-third of the anthropogenic CO₂ produced in the past 200 years has been taken up by the oceans (Sabine et al., 2004). The global ocean inventory of anthropogenic carbon was 118 ± 19 Pg C in 2004 (Sabine et al., 2004), which can be adjusted upwards to 140 Pg C in 2005 based on Denman et al. (2007, Table 7.1). Without this ocean sink, the anthropogenic change in atmospheric CO₂ concentration would be 55% higher than the observed change from 280 to 380 ppmv (Sabine et al., 2004). Although oceanic uptake of anthropogenic CO₂ will lessen the extent of global warming, the direct effect of CO₂ on ocean chemistry may affect marine biota profoundly.

Elevated partial pressure of CO₂ (pCO₂) in seawater (also known as hypercapnia) can impact marine organisms both via decreased calcium carbonate (CaCO₃) saturation, which affects calcification rates, and via disturbance to acid–base (metabolic) physiology. Recent work indicates that the oceanic uptake of anthropogenic CO₂ and the concomitant changes in seawater chemistry have adverse consequences for many calcifying organisms, and may result in changes to biodiversity, trophic interactions, and other ecosystem processes (Royal Society, 2005; Kleypas et al., 2006). Most research has focused on tropical coral reefs and planktonic coccolithophores. Little information is available for other important taxa, for processes other than calcification, or for potential ecosystem-level consequences emerging from the oceanic pCO₂ levels that are predicted to occur over the next 100 years. Here we discuss the present and projected changes in ocean carbonate chemistry, and assess their impacts on pelagic and benthic marine fauna and ecosystem processes. We exclude corals from this discussion, but note that excellent recent reviews on this topic exist (Langdon and Atkinson, 2005; Guinotte et al., 2006; Kleypas and Langdon, 2006). We highlight many of the gaps in our knowledge and identify critical questions for future research.

The ocean’s inorganic carbon system: present and future changes

The CO₂–carbonate system in seawater

The inorganic carbon system is one of the most important chemical equilibria in the ocean and is largely responsible for controlling the pH of seawater. Dissolved inorganic carbon (DIC) exists in
Figure 1. Concentrations of carbon species (in units of μmol kg⁻¹), pH values, and aragonite and calcite saturation states of average surface seawater for pCO₂ concentrations (ppmv) during glacial, preindustrial, present day, two times pre-industrial CO₂, and three times pre-industrial CO₂. Changes in the inorganic carbon system were computed by assuming equilibrium with atmospheric CO₂, assuming PO₂ = 0.5 μmol l⁻¹ and Si = 4.8 μmol l⁻¹, and using the carbonic acid dissolution constants of Mehrbach et al. (1973) as refitted by Dickson and Millero (1987). pH is based on the seawater scale. The last column shows the changes from the pre-industrial levels to three times atmospheric CO₂ (modified from Feely et al. (2004) and Kleypas et al. (2006)).

seawater in three major forms: bicarbonate ion (HCO₃⁻), carbonate ion (CO₃²⁻), and aqueous carbon dioxide (CO₂aq), which here also includes carbonic acid (H₂CO₃). At a pH of 8.2, ~88% of the carbon is in the form of HCO₃⁻, 11% in the form of CO₃²⁻, and only ~0.5% of the carbon is in the form of dissolved CO₂. When CO₂ dissolves in seawater, H₂CO₃ is formed (Figure 1). Most of the H₂CO₃ quickly dissociates into a hydrogen ion (H⁺) and HCO₃⁻. A hydrogen ion can then react with a CO₃²⁻ to form bicarbonate. Therefore, the net effect of adding CO₂ to seawater is to increase the concentrations of H₂CO₃, HCO₃⁻, and H⁺, and decrease the concentration of CO₃²⁻ and lower pH (pH = -log[H⁺]). These reactions are fully reversible, and the basic thermodynamics of these reactions are well known (Millero et al., 2002). The atmospheric CO₂ value today is ~100 ppmv greater than the pre-industrial value (280 ppmv), and the average surface ocean pH has dropped by 0.1 unit, which is about a 30% increase in [H⁺]. Under the IPCC emission scenarios (Houghton et al., 2001), average surface ocean pH could decrease by 0.3–0.4 pH units from the pre-industrial values by the end of this century (Caldeira and Wickett, 2005; Figure 2).

Present and future changes in carbonate saturation

The reaction of CO₂ with seawater reduces the availability of carbonate ions that are necessary for marine calcifying organisms, such as corals, molluscs, echinoderms, and crustaceans, to produce their CaCO₃ shells and skeletons. The extent to which such organisms are affected depends largely upon the CaCO₃ saturation state (Ω), which is the product of the concentrations of Ca²⁺ and CO₃²⁻, divided by the apparent stoichiometric solubility product (K_{sp}^*) for either aragonite or calcite, two types of CaCO₃ commonly secreted by marine organisms:

\[
Ω = \frac{[Ca^{2+}][CO_3^{2-}]}{K_{sp}^*},
\]

where the calcium concentration is estimated from the salinity, and [CO₃²⁻] is calculated from DIC and total alkalinity (TA) measurements (Feely et al., 2004). Increasing CO₂ concentrations in the atmosphere, and thus in the surface ocean, will continue to decrease the [CO₃²⁻] in the upper ocean, thereby lowering CaCO₃ saturation levels by means of the reaction:

\[
CO_2 + CO_3^{2-} + H_2O = 2HCO_3^-.
\]

In regions where Ω_{arag} or Ω_{calc} is >1.0, the formation of shells and skeletons is favoured. For values <1.0, seawater is corrosive to CaCO₃ and, in the absence of protective mechanisms (e.g. Corliss and Honjo, 1981; Isaij, 1995), dissolution will begin. Saturation states are generally highest in the tropics and lowest in the high latitudes, because the solubility of CaCO₃ increases with decreasing temperature and increasing pressure. Consequently, there is significant shoaling of the aragonite saturation horizons in the Pacific, north of ~40°N, at the equator, and 10°N, especially towards the east, because of the higher DIC concentrations relative to TA at shallower depths. These patterns result from enhanced upwelling that brings deeper waters rich in nutrients and DIC to the upper ocean (Figure 3) and supports high animal biomass. As one moves north, the aragonite saturation depth shoals from ~1000 m near 30°S to 300 m at the equator. Moving farther north, it deepens to 550 m near 30°N, then shoals to ~100 m north of 50°N (Figure 3). In the North Pacific, the upward migration of the aragonite saturation horizon from anthropogenic CO₂ uptake is currently ~1–2 m year⁻¹ (Feely et al., 2006).

Orr et al. (2005) developed model scenarios of future changes in surface ocean carbonate chemistry as a function of changes in atmospheric CO₂, using the IPCC IS92a ‘business-as-usual’ CO₂ emission scenario, with the median projection of DIC changes from 13 ocean models that participated in the OCMIP-2 project. Based on their model outputs and global gridded data (Key et al., 2004), we plotted the projected aragonite
saturation state of the surface oceans for the years 1765, 1994, 2050, and 2100 (Figure 4). The model results indicate that, by the time atmospheric CO$_2$ reaches 780 ppmv near the end of this century under the IPCC IS92a “business-as-usual” CO$_2$ emission scenario, portions of the Subarctic North Pacific and all of the Southern Ocean south of ~60$^\circ$S will become undersaturated with respect to aragonite (Orr et al., 2005). At that point, the global average surface water CO$_3^{2-}$ concentration and aragonite and calcite saturation state will be nearly half of what they are today. The aragonite saturation horizons would also shoal from its present average depth of 730 m to the surface in the Southern Ocean, from 2600 to 115 m in the North Atlantic, and from 140 m to the surface in parts of the North Pacific (Orr et al., 2005). In the cold, high-latitude surface waters typical of polar and subpolar regions of the Southern Ocean, aragonite and calcite undersaturation will occur when seawater pCO$_2$ values reach ~560 and 900 ppmv, respectively. In the slightly warmer surface waters of the subpolar North Pacific, aragonite and calcite undersaturation will occur later, when pCO$_2$ reaches 740 and 1040 ppmv, respectively. The cold waters of the Arctic Ocean are also naturally low in CO$_3^{2-}$ concentration. Continuing research is evaluating how the Arctic Ocean’s changes in carbonate chemistry during the 21st century will differ from those in the Southern Ocean (Orr et al., 2006). The warm surface waters of the tropics and subtropics will not become undersaturated with respect to aragonite or calcite over the range of these projected conditions although, in some regions associated with upwelling, shoaling aragonite saturation horizons now impinge on the depth ranges of many pelagic animals (Feely et al., 2004).

Priority areas for ocean acidification research are therefore high-latitude regions, which are projected to experience the greatest changes in carbonate chemistry over decadal to century

Figure 3. Distribution of (a) aragonite saturation; (b) partial pressure of CO$_2$ seawater (pCO$_2$); and (c) dissolved oxygen along the March 2006 P16 N transect along 152$^\circ$W in the North Pacific.
Effects of elevated pCO₂ on calcification

The secretion of CaCO₃ skeletal structures is widespread across animal phyla, and evolved independently and repeatedly over geologic time since the late Precambrian period (Knoll, 2003). Protection is one probable advantage of possessing a calcareous skeleton. Additionally, various other biotic and abiotic factors have probably contributed to selection for CaCO₃ hard parts in diverse groups of fauna at different times in evolutionary history.

Most calcifying organisms investigated to date demonstrate reduced calcification in response to increased pCO₂ and decreased [CO₃²⁻], CaCO₃ saturation state, and pH (e.g. Gattuso et al., 1998; Langdon et al., 2000, 2003; Riebesell et al., 2000). The majority of work has tested warm-water corals and coccolithophorid algae (Royal Society, 2005; Kleypas et al., 2006). Evidence suggests that the calcification rate in corals is controlled by the CaCO₃ saturation state (Gattuso et al., 1998; Langdon et al., 2000, 2003; Marubini et al., 2001, 2003; Leclercq et al., 2002; Ohde and Hossain, 2004; Langdon and Atkinson, 2005; Schneider and Erez, 2006; Silverman et al., 2007), rather than pH or another parameter of the seawater CO₂ system. Because the [Ca²⁺] in the ocean today is approximately constant (depending predominantly on salinity), changes in the [CO₃²⁻] are reflected directly as changes in the CaCO₃ saturation state. In contrast, high [Ca²⁺] in the Cretaceous (Horita et al., 2002) allowed planktonic calcifiers to flourish and large chalk deposits to accumulate (Bown et al., 2004), despite CO₃²⁻ concentrations that were only ~25% of the current value (Tyrrell and Zeebe, 2004; Ridgwell and Zeebe, 2005). This observation supports the idea that the CaCO₃ saturation state [proportional to the product of Ca²⁺ and CO₃²⁻ concentrations as shown in Equation (1)] is the key component of the seawater carbonate system that controls calcification rates.

Holoplankton

The major planktonic CaCO₃ producers are the coccolithophores, foraminifera, and euthecosomatous pteropods. These three groups of calcifiers account for nearly all the export flux of CaCO₃ from the upper ocean to the deep sea. Planktonic foraminifera and coccolithophores secrete tests or shells made of calcite, whereas pteropods form shells made of aragonite, a metastable polymorph of CaCO₃, which is ~50% more soluble in seawater than calcite (Mucci, 1983). On a global basis, coccolithophores and foraminifera are thought to produce the majority of pelagic CaCO₃ (Schiebel, 2002), while the labile aragonitic shells of pteropods account for a smaller fraction of the total CaCO₃ produced by planktonic organisms. The relative contributions of these three groups of calcifiers can vary substantially on regional and temporal scales, however. There are few concurrent measurements of the abundances of all three groups, and estimates of their contributions to global calcification rates are poorly constrained.

Both planktonic foraminifera and euthecosomatous pteropods are widely distributed in the upper ocean, with highest species diversity in tropical and subtropical regions. Shelled pteropods can reach densities of 1000s to >10 000 of individuals m⁻³ in high-latitude areas (e.g. Bathmann et al., 1991; Pane et al., 2004) and are important components of polar and subpolar ecosystems. Data are limited on the response of calcification in pteropods and foraminifera to elevated pCO₂ and decreased CaCO₃ saturation state. Currently, evidence is available for only two of the ~50 species of planktonic foraminifera and only one of the ~34
euthecosome species. Although these data suggest that both groups reduce calcification in response to ocean acidification, the small number of species tested precludes the identification of general trends. Species-specific responses are likely, and it is possible that the calcification rates of some species may not be sensitive to elevated pCO$_2$, as has been found in coccolithophores (Riebesell et al., 2000; Langer et al., 2006).

In laboratory experiments with the symbiont-bearing planktonic foraminifera *Orbulina universa* and *Globigerinoides sacculifer*, shell mass decreased in response to reduced CO$_2^-$ concentration and calcite saturation state, even though the seawater was supersaturated with respect to calcite (Spero et al., 1997; Bijma et al., 1999, 2002). When grown in seawater chemistry equivalent to pCO$_2$ of 560 and 740 ppmv, shell mass in these species declined by 4–8 and 6–14%, respectively, compared with the pre-industrial pCO$_2$ value. Evidence from microelectrode and culture experiments suggests that elevated pH and CO$_2^-$ concentration in the micro-environment immediately adjacent to the shell are critical in promoting shell growth (Spero and Lea, 1993; Rink et al., 1998; Köhler-Rink and Kuhl, 2005). When *O. universa* is grown under high light, the pH of the micro-environment surrounding the test can be increased up to 8.8 (0.5 units above ambient seawater) as a result of CO$_2$ removal during symbiotic photosynthesis. In contrast, *O. universa* grown in the dark has a near-shell micro-environment pH of 7.9, owing to respiratory CO$_2$ release (Köhler-Rink and Kuhl, 2005). Because of the large effect of symbiont photosynthesis on seawater CO$_2$ chemistry at the shell surface, it may be that the impact of ocean acidification on adult symbiont-bearing foraminifera will occur primarily during night calcification. It is unknown whether foraminifera that do not possess photosynthetic symbionts are more susceptible to reduced CO$_2^-$ concentration and calcite saturation state than those species with symbionts. Similarly, the post-zygote, protocel lar ongenetic stage of foraminifera, during which calcification is weak or absent and symbiotic algae have not yet been acquired (Brummer et al., 1987), may be particularly vulnerable to elevated pCO$_2$. Because it is currently impossible to maintain the protocel lar stage in the laboratory, however, this hypothesis awaits testing.

A positive correlation between foraminiferal shell mass and ambient [CO$_2^-$] is observed in the sedimentary record as a response to known glacial–interglacial changes in atmospheric CO$_2$ of the past 50,000 years (Barker and Elderfield, 2002). However, Barker and Elderfield (2002) demonstrate an increase in *Globigerinoides bulloides* shell mass from 11 to 19 μg for a small change in [CO$_2^-$] from 210 to 250 μmol kg$^{-1}$, whereas Bijma et al. (2002) report a much greater increase, from 40 to 60 μg in shell mass for *O. universa* for a change in [CO$_2^-$] from 200 to 600 μmol kg$^{-1}$, and ~10 μg increase in shell mass for *G. sacculifer* for a change in [CO$_2^-$] from 100 to 600 μmol kg$^{-1}$. Although it appears that culture experiments may underestimate foraminiferal response to altered [CO$_2^-$] compared with the change observed in paleo-reconstructions over glacial-to-interglacial time-scales, temperature and food supply also strongly affect foraminiferal calcification (cf. Barker and Elderfield, 2002; Bijma et al., 2002). Hence, future increases in sea surface temperatures could lead to higher foraminiferal growth rates.

Owing to their highly soluble aragonitic shells, pteropods may be particularly sensitive to ocean acidification. When live *Clio pyramidata* collected in the Subarctic Pacific were exposed to a level of aragonite undersaturation similar to that projected for Southern Ocean surface waters in year 2100 under the IS92a emissions scenario, there was marked shell dissolution within 48 h (Feely et al., 2004; Orr et al., 2005). In additional experiments, *C. pyramidata* were placed in 11 jars, and 48Ca was added to measure shell calcification rates. The jars were then closed and incubated at 10°C for 4–48 h. At the start of this experiment, the seawater $\Omega_{	ext{arag}}$ was \sim2.4. Forty-eight hours later, respiratory CO$_2$ from the actively swimming pteropods had gradually forced the aragonite saturation state to drop below 1. The 48Ca uptake experiments reveal progressively reduced calcification rates in concert with decreased aragonite saturation state that resulted from the accumulation of metabolic CO$_2$ produced by animals during the experiment (Figure 5). After 36–48 h, most of the 48Ca that had been incorporated into shells had dissolved back into solution. Hence, by 36 h, net dissolution exceeded net calcification, although animals were alive and actively swimming. Scanning electron microscopic photographs of experimental shells confirm that dissolution occurred along the leading edge of the shell by 48 h during incubation in closed jars, but no dissolution was visible in control shells incubated in open jars, where the aragonite saturation remained >1 (Figure 6). Based on pteropod oxygen consumption rates (Smith and Teal, 1973), it is unlikely that animals were oxygen-stressed during these experiments, but future experiments should explore this possibility. Additional experiments are needed to measure calcification directly in euthecosomatous pteropods and foraminifera, as a function of CaCO$_3$ saturation state. It will also be necessary to study the interactive effects of CaCO$_3$ saturation state, temperature, and nutrition for multiple species and life stages of these calcareous holoplankton.

As pCO$_2$ rises and the CaCO$_3$ saturation state of surface ocean decreases, euthecosomatous pteropods and foraminifera may secrete under-calciﬁed or thinner structures (Bijma et al., 1999). Should the habit of these organisms approach CaCO$_3$ undersaturation, first with respect to aragonite, then with respect to calcite, the question of whether net rates of calcification can still exceed dissolution will likely depend on the degree of CaCO$_3$ undersaturation and the duration that animals are exposed to undersaturated waters. As yet, no decreases in calcification have been documented in field populations of either group. However,

![Figure 5](http://icesjms.oxfordjournals.org)
baseline data on their present-day vertical distributions and calcification rates are insufficient to detect possible changes that may result from ocean acidification.

The capacity of euthecosome and foraminifera species to adapt to progressively acidified ocean waters is not known, but may be related to species’ generation time. If unabated CO₂ emissions continue and surface waters of the Southern Ocean and portions of the Subarctic Pacific become undersaturated with respect to aragonite by 2100 as projected (Orr et al., 2005), then shellled pteropods in these regions would have only ~50–150 generations to adapt to corrosive seawater, given that high-latitude pteropods are thought to have generation times of 0.6–1.5 years (Kobayashi, 1974; Bathmann et al., 1991; Dadon and de Cidré, 1992; Gannefors et al., 2005). Generation times for spineous species of foraminifera are frequently linked with the lunar cycle such that they reproduce every 2–4 weeks; however, non-spinose species probably have longer reproductive cycles (Hemleben et al., 1989). Shorter generation time affords increased opportunities for microevolutionary adaptation.

In addition to euthecosomes and foraminifera, other holoplankton calcify during part or all of their life cycles. These include the heteropods, visual predators that are found in the epipelagic zone of all tropical and subtropical oceans, but which are absent from high latitudes. Two of the three heteropod families possess aragonitic shells as adults, and species in the third family cast off their larval shells at metamorphosis. Gymnosomes, the highly specialized predators of euthecosomatous pteropods, possess a large veliger shell, presumed to be aragonite, which is also cast off at metamorphosis. Similarly, pseudoteuthosomatous pteropods possess a veliger shell that is discarded at metamorphosis to the gelatinous adult.

Benthic invertebrates
Nine multicellular invertebrate phyla have benthic representatives with CaCO₃ skeletal hard parts (Lowenstam and Weiner, 1989). These taxa secrete CaCO₃ in the form of aragonite, calcite, high-magnesium calcite (>5 mole % MgCO₃), amorphous CaCO₃, or a mixture of these CaCO₃ phases. Amorphous CaCO₃ is less stable than the crystalline phases of CaCO₃, and the seawater solubility of high-magnesium calcite is similar to or greater than that of aragonite (Walter and Morse, 1985; Bischoff et al., 1987). Many benthic calcifying fauna are prominent in nearshore communities and are economically and/or ecologically important. For example, bivalves, such as mussels and oysters, have high commercial value as fisheries and are also important as ecosystem engineers in coastal areas, providing habitat and other services for a rich diversity of organisms (Gutiérrez et al., 2003). Recent work suggests that benthic adult molluscs and echinoderms are sensitive to changes in seawater carbonate chemistry. In response to an elevated pCO₂ level projected to occur under the IS92a emissions scenario (∼740 ppmv in 2100), calcification rates in the mussel *Mytilus edulis* and the Pacific oyster *Crassostrea gigas* decreased by 25 and 10%, respectively (Gazeau et al., 2007). When grown for more than six months in seawater bubbled with air containing 560 ppmv CO₂, a decrease in shell growth was observed in the edible snail *Strombus luhuanus*, and a reduction in wet weight was reported in both this snail and two species of sea urchins (Shirayama and Thornton, 2005).

Early calcifying stages of benthic molluscs and echinoids demonstrate a strong response to increased seawater pCO₂ and decreased pH, CO₃⁻ concentration, and CaCO₃ saturation state. In the sea urchins *Hemicentrotus pulcherrimum* and *Echinodectes mathaei*, fertilization success, developmental rates, and larval size all decreased with increasing CO₂ concentration (Kurihara and Shirayama, 2004). Abnormal skeletalgenesis of the highly soluble high-magnesium CaCO₃ spicules in urchin larvae was also observed. Green et al. (2004) found that newly settled juveniles of the hard-shell clam *Mercenaria mercenaria* revealed substantial shell dissolution and increased mortality when they were introduced to surface sediments that were undersaturated with respect to aragonite (Kₐₐₘₑₐ ≤0.3), a level that is typical of nearshore, organic-rich surficial sediments. Within two weeks of settlement, the CaCO₃ shells were completely dissolved, leaving only the organic matrix of the shell.

The mineralogy and calcification mechanisms of mollusc and echinoid larval stages may render them particularly sensitive to ocean acidification. Although adult gastropods and bivalves secrete aragonite, calcite, or both phases in a diverse array of structural patterns, Weiss et al. (2002) suggest that veliger shells of gastropods and bivalves all contain aragonite in similar crystalline ultrastructures, and hence, the mollusc larval shell is highly conserved in evolution. Moreover, recent work using infrared
spectrometry and Raman imaging spectroscopy reveals that larvae of the clam *M. mercenaria* (adult shell is aragonitic), as well as that of the oyster *C. gigas* (adult shell is nearly entirely calcitic), form amorphous CaCO$_3$ as a transient precursor to aragonite (Weiss et al., 2002). Similarly, during the embryonic development of two species of sea urchins, an amorphous CaCO$_3$ precursor transforms to calcite during spicule formation (Beniash et al., 1997; Raz et al., 2003). Because this unstable, transient, amorphous CaCO$_3$ is more soluble than the crystalline minerals of aragonite or calcite, bioinmineralization processes that occur during the embryonic and larval development of sea urchins, and in gastropod and bivalve molluscs, may be particularly vulnerable to ocean acidification. CaCO$_3$ skeletal elements are also present in species of other benthic invertebrates, such as crustaceans, cidarians, sponges, bryozoans, annelids, brachiopods, and tunicates. Apart from warm-water corals, nothing is known about the effect of elevated ambient pCO$_2$ on calcification rates in these taxa. Some of these animals may use shell dissolution to support acid-based regulation at high internal pCO$_2$, as has been observed in mussels (Michaelidis et al., 2005) and other organisms.

Other non-skeletal, calcified secretions of marine fauna

In addition to using CaCO$_3$ for strengthening skeletal structures, the use of calcium minerals in gravity sensory organs is widespread among ocean fauna. In the many zooplankton and benthic invertebrates that possess statoliths, statocysts, or statoconia, the mineralogy is indeterminate or is reported to be amorphous Ca–Mg–phosphate or gypsum (Lowenstam and Weiner, 1989). In squid and fish, however, the statoliths and otoliths are composed of aragonite. Gravity sensory organs can have additional functions in some organisms. For example, in planktonic gymnosome snails, statocysts also are actively involved in the motor neural programme that underlies search movements for prey during hunting behaviour (Levi et al., 2004). Whether mineralization of the various types of gravity receptors would be affected by the changing carbonate chemistry of seawater and, if so, how that might impact overall fitness of the organism, are questions that have not been investigated. Presumably, potential impacts would depend on the ability of the organisms to regulate the acid–base balance in the tissues surrounding those structures.

Other carbonate secretions of marine fauna include gastroliths, mineralized structures formed in the lining of the cardiac stomachs of some decapods that serve as storage sites for calcium during moulting intervals; gastroliths can be calcite, amorphous CaCO$_3$, or calcium phosphate (cf. Lowenstam and Weiner, 1989). Widespread among marine fish is the intestinal secretion of calcium- and magnesium-rich carbonate complexes, which are then excreted via the rectum; this process appears to play a critical role in ounoregulation (Walsh et al., 1991; Grosell, 2006; Taylor and Grosell, 2006).

Consequences of reduced calcification

The effects of chronic exposure to increased CO$_2$ on calcifiers, as well as the long-term implications of reduced calcification rates within individual species and their ecological communities, are unknown. Calcification probably serves multiple functions in carbonate producers. Decreased calcification would presumably compromise the fitness of these organisms and could shift the competitive advantage towards non-calciﬁers. Such a consequence is supported by recent work with warm-water reef organisms in which a decreased aragonite saturation state induced the transition from a CaCO$_3$-dominated system to one dominated by organic algae (Kuffner et al., 2008).

Increased pCO$_2$ and other physiological processes

In addition to calcification, a number of other physiological indices appear to correlate with the capacity for acid–base tolerance, and new data are emerging that test the survival, growth, development, metabolism, and pH balance of organisms under elevated pCO$_2$. Prior to 1995, most studies used CO$_2$ values that were well above what is expected in the future ocean and from conventional marine animal models, in order to reveal the fundamental mechanisms associated with acid–base regulation. Studies conducted more recently have tested the physiological response to very high CO$_2$ levels as would be associated with purposeful sequestration of CO$_2$ in the ocean. There is now a critical need to test the physiological consequences of ocean acidification at lower pCO$_2$ levels, such as those that are projected to occur over the next century.

Mechanisms to deal with hypercapnia

When pCO$_2$ levels increase in seawater, dissolved CO$_2$ more readily diffuses across animal surfaces and equilibrates in both intra- and extracellular spaces. Internal levels rise until a new value is reached that is sufficient to restore CO$_2$ excretion against the elevated environmental level. As in seawater, CO$_2$ reacts with internal body fluids causing H$^+$ to increase and, therefore, pH to decrease. Mechanisms available to counteract this acidification are limited and relatively conserved across animal phyla. The mechanisms are the same as those evolved to deal with metabolically produced CO$_2$ and hydrogen ions. They include (i) passive buffering of intra- and extracellular fluids; (ii) transport and exchange of relevant ions; (iii) transport of CO$_2$ in the blood in those species that have respiratory pigments; (iv) metabolic suppression to wait out periods of elevated CO$_2$ (e.g. Somero, 1985; Truchot, 1987; Cameron, 1989; Walsh and Milligan, 1989; Hand, 1991; Heisler, 1993; Guppy and Withers, 1999; Clairborne et al., 2002; Seibel and Walsh, 2003; Pörtner et al., 2004). Those species adapted to environments with steep CO$_2$ gradients, such as hydrothermal vents or stagnant tide pools, and those species with high capacity for metabolic production of CO$_2$ have evolved greater capacities for buffering, ion exchange, and CO$_2$ transport (Seibel and Walsh, 2001, 2003). Whether such elevated capacity translates into greater tolerance of chronic ocean acidification remains to be seen.

Buffering capacity

When concentrations are elevated, CO$_2$ readily crosses biological membranes and enters the blood and intracellular spaces. Passive buffering is the only mechanism immediately available to limit pH changes within the body. Locomotory muscles of active animals, such as epipelagic fish and cephalopods, have high activities of anaerobic metabolic enzymes and, consequently, have high capacity for buffering pH changes associated with anaerobically fuelled burst locomotion (Castellini and Somero, 1981; Seibel et al., 1997). Organisms with low buffering capacity will experience greater fluctuations in intracellular pH during hypercapnia than others with higher capacity. For example, an increase in seawater pCO$_2$ sufficient to lower intracellular pH by 0.2 in a sluggish benthic fish may cause only a 0.02 pH unit drop in an active
epipelagic fish such as tuna (Seibel and Walsh, 2003). Buffering of extracellular fluid is, in some cases, also provided by formation of bicarbonate from dissolution of CaCO$_3$ stores or exoskeletons (shells or tests) as discussed below.

Ion transport

In the longer term (hours to days), compensation of acid–base imbalance relies on the ability to transport acid–base equivalent ions across cell membranes. The CO$_2$ that is produced in the cells during routine metabolism is typically hydrated to form bicarbonate and H$^+$, a reaction catalyzed by the enzyme carbonic anhydrase. These hydrogen ions are then buffered in the intracellular space as discussed above, while the bicarbonate is transported out of the cell in exchange for Cl$^-$ via ion transport proteins. Species with ineffective ion transport capacities are poorly equipped for acid–base regulation (Heisler, 1989; Walsh and Milligan, 1989). Low rates of metabolism typically correlate with lower concentrations of ion transport proteins such as Na$^+$/K$^+$ and H$^+$–ATPases (Gibbs and Somero, 1990), suggesting reduced capacities of acid–base balance. In many cases, the gelatinous tissues (e.g. mesoglea) found in diverse zooplankton are distinct from the muscle tissues that are most metabolically active (Thuesen et al., 2005a, b). Therefore, the active tissues of gelatinous animals may have greater CO$_2$ tolerance than would be estimated, based on rates of whole-animal metabolism. Similarly, species not exposed to environmental fluctuations in CO$_2$ may also be ill-equipped to handle ocean acidification. For example, species from hydrothermal vents have high activities of carbonic anhydrase relative to species from shallow environments. Even lower still are carbonic anhydrase activities of benthic deep-sea species, far removed from vent water, that experience very little fluctuation in environmental CO$_2$ (Figure 7). Compensation of acidosis via adjustments in ionic composition appears to be a trade-off that is not likely sustainable on longer time-scales, such as that associated with anthropogenic increases in seawater pCO$_2$. Nevertheless, a survey of species that are more or less able to regulate the pH of their internal fluids may be informative.

Acid–base regulation via bicarbonate accumulation

A common component of pH compensation in animals is the intracellular accumulation of HCO$_3^-$ (Walsh and Milligan, 1989; Pörtner and Reipschlager, 1996) that drives an elevation in pH. A “bicarbonate threshold” is hypothesized (Heisler, 1993; Pörtner and Reipschlager, 1996), above which the capacity for further compensation is limited. Although additional bicarbonate accumulation will always further compensate reduced pH, there may be an upper limit beyond which acid–base regulation begins to compromise ionic balance (Cameron and Iwama, 1987). Those species that can tolerate accumulation of bicarbonate to levels 4–10 times above control conditions appear generally more tolerant of hypercapnia, whereas those with limited bicarbonate accumulation may be more vulnerable.

Miles et al. (2007) recently found incomplete compensation of coelomic fluid pH, despite elevated bicarbonate levels under all CO$_2$ exposures (pH 6.2–7.4), in an intertidal sea urchin. Dissolution of the high magnesium calcite test was inferred from elevations in coelomic Mg$^{2+}$, and the authors suggested that reductions in surface seawater pH below 7.5 would be severely detrimental to this species, and probably other sea urchins as well. These results are consistent with those of Burnett et al. (2002) and Spicer (1995), demonstrating that sea urchins are unable to compensate acidosis resulting from short-term emersion and hypoxia, respectively.

Similarly, the mussel *M. edulis* compensated both short- and long-term exposure to 1% CO$_2$ (~10 000 ppmv) by dissolution of its shell as indicated by increased Ca$^+$ levels (Lindner et al., 1984; Michaelidis et al., 2005). Not surprisingly, long-term exposure resulted in reduced growth and metabolism. A deep-sea crab measured recently by Pane and Barry (2007) failed to accumulate any bicarbonate or control haemolymph pH values over 24 h exposure to hypercapnia. This poor performance was attributed to low rates of metabolism, stable environmental conditions, and reduced oxygen at depth that may have limited ion exchange capacity. In short-term experiments, the sipunculid worm *Sipunculus nudus* demonstrated hypercapnic tolerance, with only a 50% elevation in extracellular bicarbonate relative to control levels (Pörtner and Reipschlager, 1996). The reduced metabolic rate observed in this species (40% of control values), under natural, short-term elevation of CO$_2$, allows survival until well-aerated waters return with high tide. However, over the longer term (3–6 week), such metabolic suppression resulted in 100% mortality (Langenbuch and Pörtner, 2004).

Species that are more tolerant exhibit greater bicarbonate accumulation and, consequently, compensate more completely the acidosis caused by exposure to elevated CO$_2$. For example, exposure of the subtidal crab *Necora puber* to pCO$_2$ ~10 000 ppmv resulted in haemolymph bicarbonate concentrations more than four times the control levels, in part supplied by shell dissolution (Spicer et al., 2007). Similarly, the crab *Cancer magister* fully compensated its haemolymph pH over...
24 h by accumulating more than 12 mM bicarbonate (Pane and Barry, 2007). Fish appear most tolerant among marine animals. The Mediterranean fish Sparus aurata was able to compensate completely both blood plasma pH and intracellular pH in the face of 10 000 ppm pCO\textsubscript{2} via elevations in bicarbonate to five times the control levels. No mortality occurred after ten days of exposure (Michaelidis et al., 2007). Although feed intake was reduced at a seawater pH of 7.25, compensation of internal acid–base imbalance was accomplished in the sea bass Dicentrarchus labrax via a fivefold elevation in plasma bicarbonate (Cecchini et al., 2001).

Mortality

Mortality occurred in three fish species tested, including yellowtail and flounder, only at very high CO\textsubscript{2} levels (>50 000 ppm) after 24 h exposure, and the authors concluded that fish mortality caused by anthropogenic CO\textsubscript{2} is never expected in marine environments (Hayashi et al., 2004). Although we believe that this statement is premature, marine fish do appear highly tolerant of CO\textsubscript{2} (Kikkawa et al., 2004, 2006). The hatching stages of some species appeared fairly sensitive to pH decreases on the order of 0.5 or greater, but high CO\textsubscript{2} tolerance developed within a few days of hatching (Ishimatsu et al., 2004). The relative tolerance of fish and others may relate to high capacity for internal ion and acid–base regulation via direct proton excretion (Ishimatsu et al., 2004) and an intracellular respiratory protein that results in a high oxygen-carrying capacity and substantial venous oxygen reserve. When compensation of pH fails, mortality of all marine animals increases with the level of CO\textsubscript{2} and the duration of exposure (Yamada and Ikeda, 1999; Hayashi et al., 2004; Watanabe et al., 2006; Table 1).

Metabolic suppression

If compensation of acid–base imbalance is not achieved, reduced pH and elevated pCO\textsubscript{2} may depress metabolism in some species (Hand, 1991; Pörtner and Reipschläger, 1996; Guppy and Withers, 1999; Figure 8). Metabolic suppression is considered an adaptive strategy for the survival of short-term hypercapnia and hypoxia. During periods of environmental oxygen limitation, many organisms are able to suppress ATP demand, thereby extending the duration of tolerance. In many cases, oxygen limitation is coincident with internal acid–base disturbance. Metabolic suppression is not advantageous, however, under chronic elevations of CO\textsubscript{2} (e.g. S. nudus, as cited above; Langenbuch and Pörtner, 2004). Metabolic suppression is typically achieved by shutting down expensive processes. Chief among these is protein synthesis (Hand, 1991). Reduced protein synthesis, by definition, will reduce growth and reproductive potential. Although suppression of metabolism under short-term experimental conditions is a “sublethal” reversible process, reductions in growth and reproductive output will effectively diminish the survival of the species on longer time-scales.

Blood-oxygen binding

Many marine animals rely on specialized respiratory proteins to bind oxygen at respiratory surfaces (e.g. gills) and deliver it to the tissues for cellular metabolism. A high gradient from the environment to the blood promotes oxygen binding at the gills, and the gradient from the blood to the metabolizing tissues promotes its release. However, these gradients alone are often inadequate to facilitate sufficient oxygen saturation and unloading of the respiratory proteins. CO\textsubscript{2} produced by cellular metabolism interacts with body fluids to produce hydrogen ions that bind to respiratory proteins, altering their affinity for oxygen. That is, CO\textsubscript{2} production causes acidosis that promotes oxygen release at the tissues, whereas CO\textsubscript{2} excretion elevates pH and promotes oxygen binding at the gills. The sensitivity of oxygen binding to pH is expressed as the Bohr coefficient (\(\Delta \text{log} P_{\text{O}_{2}}/\Delta \text{pH}\), where \(P_{\text{O}_{2}}\) is the pO\textsubscript{2} required to achieve 50% oxygen saturation of the respiratory protein). The biotic and abiotic factors that contribute to selective pressure for pH sensitivity are complex and not easily predicted, and the measurement of pH sensitivity and blood oxygen binding depends on various ionic and organic modulators that vary tremendously from one study to another (Lallier and Truchot, 1989; Mangum, 1991). All else being equal, however, greater pH sensitivity (a larger Bohr effect) may allow more complete release of oxygen in support of high oxygen demand, or from high-affinity respiratory proteins, such as those of species adapted to hypoxic environments (Childress and Seibel, 1998; Hourdez and Weber, 2005).

Pörtner and Reipschläger (1996) predicted that species with high metabolic rates would be more severely impacted by ocean acidification because oxygen binding in their blood is more pH sensitive. Epipelagic squid (e.g. Ommastrephid, Gonatid, Loliginid) are hypothesized to be most severely impacted by the interference of CO\textsubscript{2} with oxygen binding at the gills, because their metabolic rates are higher than other aquatic animals (Seibel, 2007; Seibel and Drazen, 2007). Furthermore, oxygen carrying capacity is constrained in squid relative to active fish (Pörtner, 1994). As a result, it is necessary for active squid to utilize all of the oxygen carried in the blood on each pass through the body, even at rest, leaving no venous oxygen reserve. Unloading the entire oxygen store at the tissues requires extreme pH sensitivity (Bohr coefficient less than –1.0; Figure 9; Pörtner, 1994). One downside of this adaptation is that an increase in CO\textsubscript{2} in the environment will inhibit oxygen binding at the gills. Pörtner (1990, 1994) estimates that a reduction in environmental seawater pH by as little as 0.15 unit will reduce the scope for activity in the squid Illex illecebrosus. Recent work demonstrates that elevated pCO\textsubscript{2} (~1000 ppmv) can create measurable reductions in the oxygen consumption rate and scope for activity of another ommastrephid squid Dosidicus gigas (Figure 8; R. Rosa and B. Seibel, unpublished data). However, squid may be exceptional both metabolically and in their sensitivity to low pH. We review the pH sensitivity of oxygen binding in marine animals and find no correlation with metabolic rate or environmental oxygen levels and find no obvious phylogenetic signal (Figure 9). For example, several metabolically active species have pH insensitive respiratory proteins (low Bohr coefficients), while several others have high pH sensitivity despite low oxygen demand.

Predicting population and ecosystem responses

Table 1 lists the responses of a variety of animals to low pH–high pCO\textsubscript{2} conditions. The data indicate that foraminifera, molluscs, and echinoderms demonstrate reduced calcification and sometimes dissolution of CaCO\textsubscript{3} skeletal structures when exposed to elevated pCO\textsubscript{2} and decreasing pH and CO\textsubscript{3}2– concentration. Fertilization rates and early development are also negatively impacted by high CO\textsubscript{2} conditions in a number of groups such as sea urchins, molluscs, and copepods. Significantly, the data are limited with regard to the number of species tested at climate-relevant pCO\textsubscript{2} levels. For example, although teleost fish...
Table 1. Examples of the response of marine fauna to ocean acidification.

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
<th>CO₂ system parameters</th>
<th>Sensitivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planktonic foraminifera</td>
<td>Orbilina universa</td>
<td>Symbiont-bearing</td>
<td>pCO₂ 560–780 ppmv</td>
<td>8–14% reduction in shell mass</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scyphozoa</td>
<td>Jellyfish</td>
<td>North Sea seawater pH drop from 8.3 to 8.1</td>
<td>Increase in frequency as measured by CPR from 1958 to 2000</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Clio pyramidata</td>
<td>Shelled pteropod</td>
<td>Ω_{arag} < 1</td>
<td>Shell dissolution</td>
</tr>
<tr>
<td></td>
<td>Haliothis laevigata</td>
<td>Greenlip abalone</td>
<td>pH 7.78; pH 7.39</td>
<td>5% and 50% growth reductions</td>
</tr>
<tr>
<td></td>
<td>Haliothis rubra</td>
<td>Blacklip abalone</td>
<td>pH 7.93; pH 7.37</td>
<td>5% and 50% growth reductions</td>
</tr>
<tr>
<td></td>
<td>Mytilus edulis</td>
<td>Mussel</td>
<td>pCO₂ 7.1 / 10 000 ppmv</td>
<td>Shell dissolution</td>
</tr>
<tr>
<td></td>
<td>Crassostrea gigas</td>
<td>Oyster</td>
<td>pCO₂ 740 ppmv</td>
<td>25% decrease in calcification rate</td>
</tr>
<tr>
<td></td>
<td>Mytilus galloprovincialis</td>
<td>Mediterranean mussel</td>
<td>pH 7.3–5000 ppmv</td>
<td>10% decrease in calcification rate</td>
</tr>
<tr>
<td></td>
<td>Plococpecten magellanicus</td>
<td>Giant scallop</td>
<td>pH < 8.0</td>
<td>Decrease in fertilization and embryo development</td>
</tr>
<tr>
<td></td>
<td>Tivela stultorum</td>
<td>Pismo clam</td>
<td>pH < 8.5</td>
<td>Decrease in fertilization rates</td>
</tr>
<tr>
<td></td>
<td>Pinctada fucata</td>
<td>Japanese pearl oyster</td>
<td>pH 7.7</td>
<td>Shell dissolution, reduced growth</td>
</tr>
<tr>
<td></td>
<td>martensi</td>
<td></td>
<td>pH > 7.4</td>
<td>Increasing mortality</td>
</tr>
<tr>
<td></td>
<td>Mercenaria mercenaria</td>
<td>Clam</td>
<td>Ω_{arag} = 0.3</td>
<td>Juvenile shell dissolution leading to increased mortality</td>
</tr>
<tr>
<td></td>
<td>Dosidicus gigas</td>
<td>Epipelagic squid</td>
<td>0.1% CO₂ ~1000 ppmv</td>
<td>Reduced metabolism/scope for activity</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>Acartia steperi</td>
<td>Copepod</td>
<td>0.2–1% CO₂</td>
<td>Decrease in egg hatching success; increase in nauplius mortality rate</td>
</tr>
<tr>
<td></td>
<td>Acartia erythraea</td>
<td>Copepod</td>
<td>~2000–10 000 ppmv</td>
<td>Increasing mortality with increasing CO₂ concentration and duration of exposure</td>
</tr>
<tr>
<td></td>
<td>Copepods</td>
<td>Pacific, deep vs. shallow</td>
<td>860–22 000 ppmv</td>
<td>CO₂</td>
</tr>
<tr>
<td></td>
<td>Euphausia pacifica</td>
<td>Krill</td>
<td>pH < 7.6</td>
<td>Mortality increased with increasing exposure time and decreasing pH</td>
</tr>
<tr>
<td></td>
<td>Peraeuchaeta elongata</td>
<td>Mesopelagic copepod</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conchoecia sp.</td>
<td>Ostracod</td>
<td>1% CO₂ ~10 000 ppmv</td>
<td>Reduced thermal tolerance, aerobic scope</td>
</tr>
<tr>
<td></td>
<td>Cancer pagurus</td>
<td>Crab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>Sagitta elegans</td>
<td>Chaetognath</td>
<td>pH < 7.6</td>
<td>Mortality increased with increasing exposure time and decreasing pH</td>
</tr>
<tr>
<td>Echinodermata</td>
<td>Strongylocentrotus purpuratus</td>
<td>Sea urchin</td>
<td>pH ~6.2–7.3</td>
<td>High sensitivity inferred from lack of pH regulation and passive buffering via test dissolution during emersion</td>
</tr>
<tr>
<td></td>
<td>Psammechinus miliaris</td>
<td>Sea urchin</td>
<td></td>
<td>Spacing (1995); Miles et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Hemicentrotus pulcherrimus</td>
<td>Sea urchin</td>
<td>~500–10 000 ppmv</td>
<td>Decreased fertilization rates, impacts larval development</td>
</tr>
<tr>
<td></td>
<td>Echinometra mathaei</td>
<td>Sea urchin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cystechinus sp.</td>
<td>Deep-sea urchin</td>
<td>pH 7.8</td>
<td>80% mortality under simulated CO₂ sequestration</td>
</tr>
</tbody>
</table>

Continued
Table 1. Continued

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
<th>CO₂ system parameters</th>
<th>Sensitivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sipuncula</td>
<td>Peanut worm</td>
<td>1% CO₂, 10 000 ppmv</td>
<td>Metabolic suppression</td>
<td>Pörtner and Reipschläger (1996)</td>
</tr>
<tr>
<td>Vertebrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scyllorhinus canicula</td>
<td>Dogfish</td>
<td>pH 7.7 / 0.13%CO₂</td>
<td>Increased ventilation</td>
<td>Reviewed in Truchot (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7% CO₂ ~ 70 000 ppmv</td>
<td></td>
<td>Hayashi et al. (2004)</td>
</tr>
<tr>
<td>Sillago japonica</td>
<td>Japanese whiting</td>
<td>7% CO₂, ~70 000 ppmv</td>
<td>Rapid mortality in 1-step exposure</td>
<td>Kikkawa et al. (2006)</td>
</tr>
<tr>
<td>Paralichthys olivaceus</td>
<td>Japanese flounder</td>
<td>5% CO₂, ~50 000 ppmv</td>
<td>100% mortality within 48 h</td>
<td>Hayashi et al. (2004)</td>
</tr>
<tr>
<td>Euthynnus affinis</td>
<td>Eastern little tuna</td>
<td>15%CO₂, ~150 000 ppmv</td>
<td>100% mortality of eggs after 24 h</td>
<td>Kikkawa et al. (2003)</td>
</tr>
<tr>
<td>Pogrus major</td>
<td>Red sea bream</td>
<td>5%CO₂, ~50 000 ppmv</td>
<td>>60% larval mortality after 24 h</td>
<td>Ishimatsu et al. (2005)</td>
</tr>
<tr>
<td>Seriola quinqueradiata</td>
<td>Yellowtail/amberjack</td>
<td>5% CO₂, 50 000 ppmv</td>
<td>Reduced cardiac output; 100% mortality after 8 h</td>
<td>Ishimatsu et al. (2004)</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>Mediterranean fish</td>
<td>pH 7.3, ~5000 ppmv</td>
<td>Reduced metabolic capacity</td>
<td>Michaelidis et al. (2007)</td>
</tr>
<tr>
<td>Dicentrarchus labrax</td>
<td>Sea bass</td>
<td>pH 7.25, 24 mg l⁻¹ CO₂</td>
<td>Reduced feed intake</td>
<td>Cecchini et al. (2001)</td>
</tr>
</tbody>
</table>

Figure 8. Oxygen consumption rates under elevated CO₂ for marine animals as a percentage of control rates (air saturation). Decreases in routine metabolism, an adaptive strategy to short-term hypercapnia, of the squid Dosidicus gigas ~1000 ppmv (0.1% at 20°C), the pteropod mollusc Limacina helicina antarctica under 789 ppmv (−1.86°C), the worm Sipunculus nudus and an amphipod Phronimia sedentaris under 10 000 ppmv (1.0%), and the bivalve Mytilus edulis under ~5000 ppmv (0.5%, pH 7.3, 18°C) carbon dioxide. (R. Rosa, and B. Seibel, unpublished data; Pörtner and Reipschläger (1996); Michaelidis et al. (2005)).

may appear less sensitive to decreased pH-elevated pCO₂ compared with other faunal groups, it must be emphasized that there is no information on the response of fish to the pCO₂ values that are projected to occur over the next century. Moreover, most empirical evidence comes from short-term experiments, and we know little or nothing about the response of marine biota to continuous, long-term exposure to elevated pCO₂ or the capacity of these organisms to adapt. Nevertheless, the data in Table 1 clearly demonstrate that elevated pCO₂ can adversely impact marine fauna both via decreased carbonate saturation state, which directly affects calcification rates, and via disturbance to acid–base physiology. We use the available evidence to speculate on possible ecological winners and losers during the 21st century, and to identify priorities for critically needed research.

Species distributions

Euthecosomatous pteropods will be first among the major groups of planktonic calcifiers to experience persistent <1 saturation states in surface waters of their current geographical ranges (Figures 3 and 4). If we assume that these animals are restricted to aragonite-saturated waters, then euthecosomatous pteropod habitat would become increasingly limited, first vertically in the water column, then latitudinally, by shoaling of the aragonite saturation horizon (Orr et al., 2005). For example, the pteropod C. pyramidata is widely distributed and, in the North Pacific, its range extends to nearly 55°N. In other oceans, this species is typically found at 400–500 m during the day and in surface waters at night (Bé and Gilmer, 1977). If C. pyramidata has a similar pattern of vertical migration in the North Pacific, then this species would already be experiencing seawater corrosive to aragonite (Ω < 1) during part of its diel cycle at ~10°N and near 50°N (Figure 3). When C. pyramidata is transported from coastal waters via anticyclonic Haida eddies that form along the eastern margin of the Subarctic Pacific and move towards the Alaskan gyre, this pteropod can be a dominant member of the eddy zooplankton community (Mackas and Galbraith, 2002; Tsurumi et al., 2005). Yet, C. pyramidata demonstrated only weak diel vertical migration within an eddy, with most individuals remaining in the upper
75 m during both day and night (Mackas and Galbraith, 2002). Apart from this Haida eddy study, however, data on the vertical distribution of _C. pyramidata_ in the Subarctic Pacific are lacking. The euthecosome _Limacina helicina_ is an important high-latitude species in both the northern and southern hemispheres. In the Arctic Ocean, this species is most abundant between 50–100 m during winter and in the upper 50 m during summer (Kobayashi, 1974). South of the Antarctic Polar Front, where aragonite undersaturation of the entire water column is projected to occur within the next 50–100 years, this pteropod species comprises nearly all of the _CaCO_3 export to the ocean interior (Collier et al., 2000; Honjo et al., 2000; Accornero et al., 2003).

As aragonite saturation states approach 1 with progressive acidification during the 21st century (Figure 4), we hypothesize that shelled pteropod species, such as _C. pyramidata_ and _L. helicina_, either will have to adapt to living continuously in seawater undersaturated with respect to aragonite or restrict their vertical and latitudinal distributions to warmer, more carbonate-rich regions that remain supersaturated with respect to aragonite. This latter possibility may be limited by the extreme adaptations to low temperature that may prevent equatorward movement of polar animals (Stillman, 2003; Somero, 2005; Seibel et al., 2007). Waters undersaturated with respect to aragonite are currently impinging upon the depth ranges of pteropods in several other regions, such as upwelling areas associated with the Benguela Current, western Arabian Sea, and Peru Current, where pteropod abundances can be high (e.g., Be and Gilmer, 1977; Fabry, 1990; Boltovskoy et al., 1993; Kalberer et al., 1993; Hitchcock et al., 2002; Mohan et al., 2006).

Although future anthropogenically induced reductions in the saturation state of calcite will not be as severe as those for aragonite, species of the calcitic foraminifera may also change their geographic distributions in response to decreased calcite saturation states. As calcite undersaturation is projected to occur ~50–100 years subsequent to that of aragonite (Orr et al., 2005), foraminifera could be displaced from high latitudes, where they can be abundant. Changes in species composition could also occur, as has been reported in the California Current in response to anthropogenic warming (Field et al., 2006). Currently, there are few high-quality data on the diel vertical distributions of euthecosomes and foraminifera in these areas to test whether shelled pteropod and foraminiferal populations will shift their depth ranges as the carbonate chemistry of seawater changes.

In addition to calcification, other physiological indices indicate general trends that may be useful for predicting species’ vulnerability to ocean acidification. Those with low metabolic rates, including perhaps gelatinous zooplankton and those that experience little natural variation in _CO_2, appear to demonstrate lesser _CO_2 tolerance. Thus, at first glance, zooplankton inhabiting the ocean may appear highly susceptible to ocean acidification, given the constancy of the pelagic environment relative to hydrothermal vents or the intertidal zone (Truchot and Duhamel-Jouve, 1980). However, large, vertical gradients in environmental variables, including oxygen, _CO_2, and _pH_, exist in the upper 1000 m (Figure 3), and most zooplankton species migrate daily from near-surface waters to depths of 200–700 m. In the expansive regions with pronounced oxygen minimum layers (Figure 3c), these diel migrations expose zooplankton to wide variations in _pCO_2 values (Figure 3b) greater than those expected for average surface waters as a result of anthropogenic ocean acidification over the next 100 years (Figure 1). Therefore, although the open ocean environment has fluctuated historically only over millennial time-scales (Kennett and Ingram, 1995), giving species ample time to adapt (Childress and Seibel, 1998), the effective environment of many species in the open ocean is not constant.

Many species migrating into oxygen minimum layers may do so by suppressing metabolism and supplementing remaining energy demands with anaerobic metabolic pathways (Childress and Seibel, 1998; Hunt and Seibel, 2000). Anaerobic metabolism itself may exacerbate internal acid–base imbalance (Hochachka and Somero, 2002). Therefore, vertically migrating species, like those living intertidally or near hydrothermal vents, experience oscillating periods of simultaneous hypoxia and high _pCO_2 that require specific adaptations for tolerance (Childress and Seibel, 1998). Those adaptations may make zooplankton in hypoxic regions more tolerant of elevated _pCO_2, at least on short timescales, than those in well-oxygenated regions. This hypothesis is supported by the recent work of Watanabe et al. (2006), who found greater mortality during short-term exposure to high _pCO_2 in shallow-living and subtropical copepods than in deep-living species in the Subarctic Pacific, where _pCO_2 is naturally much higher. However, Pane and Barry (2007) suggested that low oxygen exacerbated internal acid–base imbalance in a

deep-sea crab. Currently, there is no evidence that adaptation to variably hypercapnic environments promotes tolerance of chronic ocean acidification such as that expected over the next century. Furthermore, as warming alters ocean stratification, the vertical and horizontal extent of the oxygen minimum layer is expected to change, and ocean acidification will elevate pCO₂ levels at subsurface depths. Warming is also expected to act synergistically to exacerbate oxygen limitation and further hinder CO₂ tolerance (Metzger et al., 2007).

Predictive ability of the response of zooplankton populations to ocean acidification is hampered by a paucity of measurements at climate-relevant CO₂ concentrations (Table 1). In many cases, no information exists for ecologically important taxa such as larvaceans, salps, amphipods, and euphausiids. Gelatinous zooplankton have not been examined at all for CO₂ tolerance. Their low metabolic rates may make them highly susceptible; however, they may also exhibit species-specific responses to increased pCO₂, similar to the differential response observed among medusae species to hypoxia (Rutherford and Thuesen, 2005; Thuesen et al., 2005a, b). Attrill et al. (2007) reported a significant correlative relationship between reduced pH and increased frequency of medusae, as sampled by the Continuous Plankton Recorder for 40 years in the North Sea. The authors suggest that the frequency of medusae in the North Sea will increase over the next century as surface water pH values decrease. As yet, no causative mechanism linking jellyfish abundance with ocean acidification is known.

Fertilization success and early developmental stages of many faunal groups appear to be particularly vulnerable to elevated pCO₂ (Table 1). The tolerance of early life stages may impact recruitment success and, ultimately, species abundances and distributions. If the formation of highly soluble, amorphous CaCO₃ as a transient precursor to crystalline phases in embryonic and larval stages (Benish et al., 1997; Weiss et al., 2002) is widespread among mollusc and echinoderm species, then these phyla may be particularly at risk from progressive ocean acidification in many oceanic regions. Additional investigation is needed to determine if ocean acidification-induced mortality of these stages could drive a reorganization of benthic and pelagic communities and also adversely impact commercially important fisheries.

Trophic dynamics and other ecosystem processes

The relative rate of change in surface seawater carbonate ion concentration is greatest in high-latitude regions (Orr et al., 2005; Figure 4). In polar and subpolar areas, the progressive shoaling of the aragonite saturation horizon and the decreasing calcite saturation state of the euphotic zone over future decades will impact trophic dynamics and other ecosystem processes, including the cycling of CaCO₃ and organic matter. Euthecosomatous pteropods are functionally important components of high-latitude ecosystems with the potential to influence phytoplankton stocks (Hopkins, 1987), carbon fluxes (Noji et al., 1997; Collier et al., 2000; Honjo et al., 2000), and dimethyl sulphide levels (Levasseur et al., 1994) that, in turn, influence global climate through ocean–atmosphere feedback loops. The possible extirpation of euthecosomatous pteropods from the high-latitude regions would impact the downward organic carbon flux associated with pteropod faecal pellets (Thibault et al., 1999; Collier et al., 2000) and remove a major source of CaCO₃ in such regions (e.g. Bathmann et al., 1991; Gardner et al., 2000; Honjo et al., 2000; Accornero et al., 2003; Tsurumi et al., 2005). Similarly, if foraminifera densities decrease in some high-latitude regions, where they are currently abundant (e.g. Subarctic Pacific), CaCO₃ export to the ocean interior will be reduced, which in turn would decrease their potential to act as ballast in the transport of organic carbon to the deep sea (Schiebel, 2002).

Most of the carnivorous zooplankton and fish (e.g. cod, pollock, haddock, mackerel) that feed on euthecosomatous pteropods (Ito, 1964; LeBrasseur, 1966; Lalli and Gilmer, 1989) would be able to switch to other prey types, which could result in greater predation pressure on juvenile fish such as salmon (Willett et al., 2001). In contrast, gynosomes prey exclusively on shelled pteropods (Lalli and Gilmer, 1989) and would likely shift their geographic distribution in concert with their euthecosome prey, assuming both predator and prey are able to overcome possible thermal tolerance limitations (Seibel et al., 2007). Another specialized predator, the myctophid Centrobrachus brevirostris, which feeds predominantly on the pteropod C. pyramidata in the Kuroshio waters of the western North Pacific (Watanabe et al., 2002), would also be highly impacted if euthecosomes were excluded from its habitat in the future; typically, the trade-off in such highly specialized feeding is a reduced ability to diversify when the preferred prey is absent.

In the North Pacific, the euthecosomes L. helicina and, to a lesser extent, C. pyramidata can be important prey of juvenile pink salmon (Oncorhynchus gorbuscha), which comprise a large part of the commercial catch of salmon in the North Pacific (cf. Armstrong et al., 2005). Pink salmon have a short, two-year life-span, and their recruitment is thought to be affected by diet and availability of prey during their early marine life history. In a three-year study designed to examine the interannual variability of the feeding habits of juvenile pink salmon, Armstrong et al. (2005) found that L. helicina accounted for ≥60% by weight of the juvenile salmon diet in two of three years, but only 15% in the third year. Juvenile pink salmon rapidly increase in size during summer in the Subarctic Pacific, feeding on progressively larger prey items and switching from L. helicina to the larger C. pyramidata by October (Boldt and Haldorson, 2003; Armstrong et al., 2005). In a model study linking oceanic foodwebs to production and growth rates of pink salmon, Aydin et al. (2005) found that decreased energetic foraging costs for zooplanktivorous juvenile salmon and the ontogenetic diet shift from zooplankton to squid were both key factors that strongly influenced the biomass of mature pink salmon. Because euthecosomatous pteropods can reach swarm densities in near-surface waters during daylight, either through concentration by eddies (Tsurumi et al., 2005) or life-history traits (Bathmann et al., 1991; Gannefors et al., 2005), visual predators such as juvenile pink salmon may be able to reduce forage costs by feeding within pteropod patches. Other preliminary model results suggest that a 10% decrease in pteropod production could lead to a 20% drop in mature pink salmon body weight (Aydin, pers. comm.). During the ontogenetic diet shift of juvenile salmon, the gonadat squid Beryxusethias anonychus is an important control on adult salmon biomass; availability of this lipid-rich prey species substantially accelerates the growth of both pink and sockeye salmon in bioenergetic models (cf. Aydin et al., 2005). Similarly, Gonatus fabricii, among the most abundant squid species in the North Atlantic, is the most important prey item to a number of marine mammals and may be responsible for their seasonal occurrence in some regions (Bjorke, 2001; Hooker et al., 2001). Although the respiratory physiology of gonatid squid has not been investigated in detail, their metabolic
rates are high (Seibel, 2007), which may lead to high CO₂ sensitivity, as described above for ommastrephids (e.g. Pörtner and Reipsläger, 1996; Pörtner et al., 2004). Ommastrephids are also important components of ecosystems and are important commercial fisheries worldwide (Rodhouse and White, 1995; Clarke, 1996; Nigmatullin et al., 2001).

Ocean acidification could also affect foodwebs and carbon cycling through bottom-up controls involving pH-dependent speciation of nutrients and metals (Husemann et al., 2002), which, in turn, may alter species composition and rates of primary productivity. The interactive effects and feedback of changing seawater CO₂ chemistry with other stressors, such as warming, eutrophication, introduced species, and overfishing, may act to alter ecosystem responses that would otherwise result from only one of these stressors (Schippers et al., 2004; Hutchins et al., 2007). Quantification of these complex ecosystem processes requires additional empirical data, as well as new modelling efforts, particularly on regional scales.

Research needs and conclusions

Most experimental work on the impacts of ocean acidification on marine biota at climate-relevant pCO₂ values has investigated the calcification response of corals and coccolithophores (cf. Kleypas et al., 2006). There is a critical need for information on the sublethal calcification and energetic responses of a diverse suite of zooplankton and micronekton. We need to move forward on several fronts in parallel.

- In sensitive regions and for critical species, we need to track the abundances and depth distributions of calcareous and non-calcifying fauna, measure calcification and metabolic rates of these groups, and relate these data to changes in the CO₂ chemistry of the water column. This requires commitment to long-term monitoring programmes at appropriate temporal and spatial scales to detect possible shifts, and distinguish between natural variability and anthropogenically induced changes.
- Using pCO₂ levels projected to occur over the next century, manipulative laboratory experiments are needed to investigate the calcification and dissolution responses, identify physiological indices useful in predicting CO₂ tolerance, determine the costs of acid-base regulation, and quantify sensitive energetic processes, such as skeletal and tissue growth, reproduction, and metabolism for critical life stages of key species.
- Mesocosm and field experiments are necessary to quantify ecosystem impacts from ocean acidification that may include forcing from bottom-up controls, changes in foodweb structure, biogeochemical cycling, and feedback mechanisms.
- High-priority areas for research include high-latitude regions, which may become undersaturated with respect to aragonite as early as 2050, and regions with pronounced oxygen minimum layers or coastal hypoxia, which are already characterized by high pCO₂ and may be particularly at risk, owing to the combined effects of low oxygen with elevated pCO₂, warming, and eutrophication.
- Target species for investigation in the above regions include echinococmatous pteropods, foraminifera, epipelagic squid, and larval stages and adults of commercially and ecologically important benthic invertebrates such as bivalves, sea urchins, crabs, and lobsters. We also need to test taxa for which there are currently no data available, including medusae, larvacenes, and various crustaceans. Additional experiments should examine the interactive effects of seawater CO₂ chemistry with temperature, dissolved oxygen, food availability, and other variables that may change as a result of human activities.
- New approaches (e.g. functional genomics and DNA barcoding) and advances in existing technologies (e.g. autonomous chemical sensors and optical plankton samplers) are necessary to investigate the in situ response of organisms that are difficult to maintain in the laboratory, identify sublethal effects of chronic exposure to elevated pCO₂ on marine fauna, and address questions of long-term impacts and potential for adaptation over decadal to centennial time-scales.
- Models are critical to scale up results from manipulative experiments and field observations to predict ecosystem impacts on regional and global scales.

Although the changes in seawater chemistry that result from the oceanic uptake of anthropogenic CO₂ are well characterized over most of the ocean, the biological impacts of ocean acidification on marine fauna are only beginning to be understood. New technologies and advances, as well as integrated, multidisciplinary efforts among biologists and chemists, experimentalists and modelers will be required to quantify the effects of ocean acidification on marine fauna and changes in ecosystem structure and function. Nevertheless, sufficient information exists to state with certainty that deleterious impacts on some marine species are unavoidable, and that substantial alteration of marine ecosystems is likely over the next century.

Acknowledgements

This work was supported jointly by the National Science Foundation (NSF grants OCE-051726 and OPP-0538710 to VFE, and OCE-0526493 and OPP-0538479 to BAS) and the National Oceanic and Atmospheric Administration (NOAA). We specifically acknowledge programme managers Don Rice, Phil Taylor, and Roberta Marinelli of the NSF Chemical and Biological Oceanography Programs and Office of Polar Programs, respectively; and Kathy Tedesco and Mike Johnson of the NOAA Climate Change Program for their support. We thank H. Spero, B. Hönisch, and A. Maas for discussions and comments on earlier drafts of this paper. The IAEA is grateful for the support provided to its Marine Environmental Laboratory by the Government of the Principality of Monaco.

References

Impacts of ocean acidification on marine fauna and ecosystem processes

Impacts of ocean acidification on marine fauna and ecosystem processes

doi:10.1093/icesjms/fsn048